A Sphere Buoyant in a Dilute Polymer Solution

S. GRISAFI, P. O. Box 230086, Brooklyn, New York 11223-0003

Synopsis

The density and pressure fields of a dilute polymer solution are nonuniform at the surface of
a small sphere even when there is no fluid motion. The polymer solution is modeled by an ensemble
of Hookean dumbbells. A hard core potential is assumed as the only interaction between the sphere
and the macromolecules. The pressure field about the sphere is transversely isotropic. The per-
pendicular component of the pressure at the interface is greater than the isotropic pressure in the
bulk of the fluid. The parallel component of the pressure at the interface is less than the bulk
isotropic pressure. The surface adsorption (cf., surface pressure) and the film thickness vary with
a parameter that is the ratio of the sphere radius, a, to the root mean square extension of the
dumbbells, Ry,. The spherical results coincide with the plane wall results for a/R, greater than
approximately 100.

INTRODUCTION

Dispersions of solid particles in polymer solutions find application in many
technologies. The stability of the dispersions depends upon the interaction
between the particles and the polymer.! It is well known that the presence of
a solid surface can modify the rheological properties of a polymer solution.’
For the sake of analysis the dispersed particles can be considered to be spheres.
Previous investigations of the interface addressed a plane surface.? Our present
concern is the interface between a sphere and a dilute polymer solution con-
taining macromolecules of a size comparable to that of the sphere. Our objective
is to demonstrate by a theoretical analysis the nonuniformity of the density
and pressure fields about the sphere. We supplement this demonstration with
a prediction of the surface adsorption and the film thickness of the interface.
We choose these two quantities since they can be measured experimentally and
therefore enable experimental verification of the theoretical predictions.

One consequence of the nonuniformity of the polymer solution density and
pressure fields at the interface is the apparent slip of the fluid at the solid
surface. This has been observed for the flow of dilute polymer solutions in
capillaries.* One hypothesis for the occurrence of apparent slip is steric hin-
drance. The steric hindrance hypothesis differs from the others* in that only
it predicts different interfacial properties when the fluid is at rest.> The pos-
sibility of nonuniform interfacial properties about a spherical particle immersed
in a polymer solution at rest has implications for the stability of dispersions
in quiescent media. That is, the sedimentation rates of the particles may be
affected by the nonuniform interfacial properties. Our analysis assumes the
fluid to be at rest about the sphere because a particle in dispersion is in a quasi-
static suspension. A departure from this quasi-static condition results in the
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sedimentation of the dispersed particles. Hence, our analysis should be consid-
ered as providing the initial conditions for analyses of colloidal stability.

We apply the steric hindrance hypothesis to the interface between a sphere
and a dilute polymer solution. The macromolecules are modeled by an ensemble
of Hookean dumbbells. The molecular weight distribution for the polymer is
the Dirac delta distribution. We assume that the macromolecules do not interact
with one another. Hence, the analysis is applicable only to solutions at infinite
dilution. The hard core potential is assumed to be the only interaction between
the macromolecules and the sphere. This choice of wall potential alters the
polymer density and pressure fields about the sphere by causing a depletion of
polymer within the interface. We evaluate these changes and show how they
relate to the experimentally observable surface adsorption and film thickness.

FORMULATION OF THE PROBLEM

The number density of dumbbells is defined as®
n(r) =fdr2‘lf(r1=r, ry) (1)

The configuration space distribution (CSD), V¥, is a function of the position
of the beads of the dumbbell, r; and r,. The integration is over all permissible
coordinates for the position vector of bead 2 while holding bead 1 at any point
in space. To visualize the volume of permissible orientations, one may consider
a point source of light to shine from bead location r;. The integration volume
is then the volume that is illuminated. The zone of forbidden orientations is
that which is cast in the shadow of the sphere.

To evaluate the polymer density field about a sphere of radius a, we place
the origin of a spherical-polar coordinate system at the center of the sphere.
Applying the spherical coordinate system yields

<<} 05
n(r) = 27rf drgrgf dbssin 0,V (ry = 1, ry) (2)
a 0

where 0, is the angle measured from the initial ray r,. 8, defines the boundary
of the shadow region,
8, = Arc cos(a/r) + Arc cos(a/ry) (3a)
For the fluid at rest about the sphere, the CSD is given by
V(ry, ry) = (3/27)% %nexp(—3/2(r? + ri — 2rirycos 6;) /RE)  (3b)
where n,, is the polymer number density far from the sphere. The root mean
square (rms) extension of the macromolecules is designated by Ry. Note that

R, serves as a measure of the polymer molecular weight.
Performing the integration yields
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n(r) = ne(1 +erf((3/2)%(r — a)/Ry)

+ (r2—a®)V%/rerfc((3/2(r* — a®))2/Ry)) /2
+1/(67) 2Ry /r(exp(—3/2(r — a)?/R{) — exp(—3/2(r* — a®)/R})) (4a)

where erf denotes the error function and erfc denotes its complement. When
we equate the distance from the wall z with (r — a)/R,, for large values of a/
R, we expect the density field to approach that adjacent to a plane wall,

n(r) =n,(1+erf((3/2)¥%2))/2 (4b)

The polymer density field is usually not directly observable. The adsorbance
at a spherical surface should be observable via ellipsometry. The theoretical
quantity corresponding to the ellipsometric adsorbance is the surface adsorption,
T. The surface adsorption is related to the density field by?

T= J.OO drn(r) — ng, (5a)

The surface adsorption is related to the surface pressure, P®, by
P =T/(kT) (5b)

where k is Boltzmann’s constant and T is the absolute temperature.

To describe the thickness of the interface, we adopt the concept of an equiv-
alent homogeneous film.® This device employs a boundary layer of a constant
density throughout the interface. The thickness of this boundary layer, §, is

given by
© 2 o
6=(f drn(r)—nm) /f dr(n(r) — ny)? (6a)

The constant polymer density, n,, existing within this interface can be expressed
in terms of the surface adsorption and the film thickness®

o(nf—ny) =T (6b)

Hence, the surface adsorption and the film thickness serve to define completely
the equivalent homogeneous interface.

For the fluid at rest about the sphere there exist no shear stresses within
the fluid, only normal stresses or pressure. The total stress in the fluid about
the sphere is the sum of the polymer and solvent contributions. The solvent
contribution is the familiar isotropic pressure. The polymer contribution con-
sists of a kinetic contribution and an intramolecular contribution. The intra-
molecular contribution, o ‘?, results from the tension in the Hookean spring
of the dumbbell. The kinetic contribution is isotropic, ¢ '8, where & is the unit
tensor. The kinetic contribution is given by’
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o ® = —2nkT (7)
To evaluate the intramolecular contribution we center our coordinate system
at a position r along the spring of the dumbbell. Doing so enables us to be

certain that the orientations we include contribute to the polymer stress. The
intramolecular contribution is expressed as®

1
a(C)=Hfd3Rf da¥(r—-aR,r + (1 — «a)R) (8a)
0
where R = r, — r,. Applying the spherical coordinate system at r yields

@ 1
o = 27er dRsz df sin Bf daR?(cos?08 .8, + sin?08,9))
0 \'’4 0
XV¥(~aR, (1 —a)R) (8b)
where §; is the unit vector normal to the surface of the sphere and § is a unit
vector parallel to the surface. The angle 6 is measured from the initial ray r.
The integration for 6 is over the domain V consisting of all permissible ori-
entations.
The symmetry condition
\I,(rly rZ):\Il(r2, rl) (9)
permits us to limit § < }x radians. With the origin at r the angle between the
beads of the dumbbell is always = radians. To evaluate the limits for 8 we
consider the spherical obstacle. The easiest route to take is to perform the
required integrations over all space then subtract out the orientations blocked

by the sphere. Breaking up the intramolecular contribution into its components
yields

0c
ol = nka(l - 3f df sin 0 cos®0(erfc((3/2)?8/Ry)
0
+(2/(37f))1/26/ROGXP(—3/232/R%))) (10a)
0,
U,(lc) = nwkT(Z -3 f dé sin30(erfc((3/2)1/26/Ro)
o

+(2/(37r))”26/Roexp(-3/252/R%))) (10b)

where 4. is given by
sinf, =a/r (10c)

and g is given by
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B8 =rcosf— (a®— r?sin%)*/? (10d)

Note that the parallel component is the sum of the colatitude, 84,85, and azi-
muthal, 8,3,, contributions where ¢ is the azimuthal angle. The polymer con-

tribution to the pressure is therefore transversely isotropic. The perpendicular
component of the total pressure is

P, =P, + 2nkT — o, (11a)
and the parallel component is
P||=Ps+2nkT-— %O'H (11b)

where P, is the solvent contribution to the pressure.

RESULTS AND DISCUSSION

The polymer density field about the sphere is presented in dimensionless
form in Figure 1. The choice of abscissa (r — a) /R, permits direct comparison
of the density profile for each value of the parameter a/R,. It also shows how
the profiles converge to a limiting profile as a/ R, increases. This limiting profile
is the planar limit. The density profile about the sphere reaches the density
profile adjacent to a plane wall at approximately a/ R, = 100. Hence, for particles
of a size two orders of magnitude or more greater than the size of the macro-
molecules, the curvature of the particle’s surface can be neglected. The polymer
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Fig. 1. Polymer density about a sphere of radius a. The abscissa is (r — a)/R,. The ordinate
is n/n,,. The curves are marked by the logarithm of their value for a/R,.
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density reaches to within 99% of its unbounded value at approximately
(r —a)/Ry = 1.5. The value of the polymer density at the surface of the sphere
is in,, for all values of a/R,.

The thickness of an equivalent homogeneous film and its corresponding
surface adsorption are shown in Figure 2 as a function of the parameter a/R,.
For the choice of the hard core potential as the only interaction between the
sphere and the macromolecules, the surface adsorption is negative for all values
of a/R,. This signifies that there is a depletion of polymer within the interface,
as can also be seen from the density profiles. The surface adsorption approaches
its planar limit of I'/(n,Ry) = —1/(67)'/? with increasing values of a/R,.
The surface adsorption reaches to within 1% of its planar limit at approximately
a/Ry = 20. The film thickness approaches to within 1% its planar limit of §/
R, = .786 also at approximately a/R; = 20. At the planar limit, the density
within this equivalent homogeneous film is 71% of the bulk polymer density.

The perpendicular contribution to the polymer pressure is presented in di-
mensionless form in Figure 3. The choice of the abscissa (r — a)/R, has the
same advantages for the pressure field as it does for the density field. The
polymer contribution to the perpendicular pressure within the interface is
greater than the polymer pressure in the bulk of the fluid. With increasing
values of a/R, the perpendicular pressure approaches the uniform profile of
the planar limit. In the planar limit the perpendicular pressure has its un-
bounded value right up to the surface. As can be seen in Fig. 3, the perpendicular
pressure has nearly reached its planar limit at a/R, = 100.

Figure 4 presents the polymer contribution to the parallel pressure. The
polymer contribution to the parallel pressure within the interface is less than
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Fig. 2. 'The dimensionless surface adsorption, I'/ (n,R,), or surface pressure, P'*)/ (n kTR,),
is the curved marked by A. The boundary layer thickness of an equivalent homogeneous film, 8/

Ry, is the curve marked by T. The abscissa is a/R,. The planar limit for each quantity is indicated
by the horizontal asymptote for each curve.
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Fig. 3. Perpendicular polymer pressure at the interface. The abscissa is (r — a)/R,. The
ordinate is (P, — P,)/(nkT). The curves are marked by the logarithm of their value for a/R,.
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the polymer pressure in the bulk of the fluid. The parallel pressure reaches its
planar limit at approximately a/R, = 100. Its planar limit shows a spatial
variation that has been discussed before.® The perpendicular and parallel pres-
sures satisfy the equation of motion for this geometry

1
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Fig. 4. Parallel polymer pressure at the interface. The abscissa is (r — @)/R,. The ordinate
is (Py — P,)/(n,kT). The curves are marked by the logarithm of their value for a/R,.
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dPl/dr+2/r(Pl—P“)=0 (12)

The equation of motion does not tell us whether or not the parallel pressure
varies with r. This could only be found from kinetic theory.

CONCLUSIONS

Both the polymer density and pressure fields in the immediate vicinity of a
sphere immersed in a dilute polymer solution differ from what we assume the
sphere to experience. The surface of the sphere experiences a transversely iso-
tropic pressure contributed by the polymer. The perpendicular component of
the polymer pressure at the interface is greater than the isotropic pressure in
the bulk of the fluid. The parallel component at the interface is less than the
isotropic pressure in the bulk. For particles of a size two or more orders of
magnitude larger than the size of the macromolecules, the particle surface can
be modeled as a plane wall.

An interface with rheological properties different from the bulk may affect
the rate of sedimentation of particles in polymer solutions. It seems prudent
to consider the difference between the interfacial and bulk properties when we
consider the stability of dispersions of solid particles. The difference in the
properties of the interface will depend upon the chemistry of the interaction
between the particle and polymer. The trends predicted by the hard core po-
tential will not agree with situations in which a positive net adsorption of
polymer occurs at the interface. However, in those cases the interfacial prop-
erties will also differ from that of the bulk. The magnitude of some of the other
observable phenomena that the steric hindrance hypothesis can predict, such
as the apparent slip of dilute polymer solutions in capillaries, suggests that the
nonuniform interfacial properties should be taken into account. We suggest
that analyses of colloidal stability include the nonuniformity of the density and
pressure fields about the dispersed particles.

The author is grateful to Professor Dr. P. O. Brunn for suggesting this problem and for his
helpful correspondence. The author also thanks Professor H. Scott Fogler for his help with the
reference materials.

References

1. D. H. Melik and H. Scott Fogler, in Encyclopedia of Emulsion Technology, Vol. 3, P. Becher,
Ed., Marcel Dekker, New York, 1988, pp. 3-78.
. P. O. Brunn, J. Rheol., 29, 859 (1985).
. 8. Grisafi and C. J. Durning, J. Colloid Interface Sci., 130, 35 (1989).
. Y. Cohen and A. B. Metzner, J. Rheol., 29, 67 (1985).
. P. O. Brunn and 8. Grisafi, Chem. Eng. Commun., 36, 367 (1985).
. R. Stromberg, D. Tutess, and E. Passaglia, J. Phys. Chem., 69, 3955 (1965).
7. R.B. Bird, O. Hassager, R. C. Armstrong, and C. F. Curtiss, Dynamics of Polymeric Liquids,
II. Kinetic Theory, Wiley, New York, 1977.

Received March 30, 1989
Accepted April 25, 1989

D U o W N





